02-04-2010, 02:45 PM,
|
|
CrystalH
Member
|
Posts: 113
Threads: 9
Joined: Feb 2010
|
|
Easy drifting cars (.car files)
Hi, I've been playing the original, but the cars do not drift much, nor easily.
So I modified an existing car's parameters (a lot), until I found it comfortable and much more playable.
This "3S.car" file is for the "Mazda 3" car (short name 3S), links:
http://cars.vdrift.net/node/7
or
http://vdrift.svn.sourceforge.net/viewvc...a/cars/3S/
Just replace the original 3S.car file with this.
The tire settings give a feeling somewhere between wet tarmac and gravel, the car can even drift a circle in place, on full throttle and steer, at 2nd gear. (It can be made even more sleepy by lowering a3 for tires e.g. to 375).
Code: drive = AWD
version = 2
[ steering ]
max-angle = 22.1
[ engine ]
position = 0.0, 0.4, -0.1
mass = 70.0
max-power = 659360
peak-engine-rpm = 6500
rpm-limit = 7000.0
inertia = 0.25
idle = 0.08
start-rpm = 1000
stall-rpm = 400
fuel-consumption = 1e-9
torque-friction = 0.0001
torque-curve-00 = 1000, 525.4
torque-curve-01 = 2000, 538.95
torque-curve-02 = 2500, 562.0
torque-curve-03 = 3000, 566.07
torque-curve-04 = 3300, 579.63
torque-curve-05 = 3500, 593.19
torque-curve-06 = 3800, 694.54
torque-curve-07 = 3900, 601.32
torque-curve-08 = 4000, 604.03
torque-curve-09 = 4100, 606.75
torque-curve-10 = 4200, 608.10
torque-curve-11 = 4400, 604.03
torque-curve-12 = 4600, 595.9
torque-curve-13 = 4900, 579.63
torque-curve-14 = 5500, 533.53
torque-curve-15 = 6000, 498.28
torque-curve-16 = 6300, 471.16
torque-curve-17 = 7000, 450.83
[ clutch ]
sliding = 0.27
radius = 0.15
area = 0.75
max-pressure = 93000
[ transmission ]
gears = 6
gear-ratio-r = -3.43
gear-ratio-1 = 3.72
gear-ratio-2 = 2.40
gear-ratio-3 = 1.77
gear-ratio-4 = 1.36
gear-ratio-5 = 1.02
gear-ratio-6 = 0.78
shift-delay = 0.02
[ differential ]
final-drive = 3.21
anti-slip = 400.0
[ fuel-tank ]
position = -0.1, -0.2, -0.26
capacity = 100.0
volume = 100.0
fuel-density = 0.08
[ suspension-front ]
spring-constant = 60000.0
bounce = 5000.0
rebound = 7500.0
travel = 0.12
max-compression-velocity = 10.0
camber = -1.33
caster = 0.32
toe = 0.0
anti-roll = 36000.0
[ suspension-rear ]
spring-constant = 55000.0
bounce = 4000.0
rebound = 6000.0
travel = 0.12
max-compression-velocity = 10.0
camber = -0.45
caster = 0.28
toe = 0.2
anti-roll = 12000.0
[ tire-front ]
radius = 0.31
rolling-resistance = 1.3e-2, 6.5e-6
rotational-inertia = 10.0
tread = 0.0
#-------- Lateral force
a0=1.45 # Shape factor A0
a1=-96 # Load infl. on lat. friction coeff (*1000) (1/kN) A1
a2=3645 # Lateral friction coefficient at load = 0 (*1000) A2
a3=475 # Maximum stiffness (N/deg) A3
a4=21 # Load at maximum stiffness (kN) A4
a5=0.013 # Camber influence on stiffness (%/deg/100) A5
a6=-0.34 # Curvature change with load A6
a7=0.14 # Curvature at load = 0 A7
a8=0.019 # Horizontal shift because of camber (deg/deg) A8
a9=-0.019 # Load influence on horizontal shift (deg/kN) A9
a10=-0.18 # Horizontal shift at load = 0 (deg) A10
a111=-11 # Camber influence on vertical shift (N/deg/kN) A11.1
a112=-0.021 # Camber influence on vertical shift (N/deg/kN**2) A11.2
a12=0.98 # Load influence on vertical shift (N/kN) A12
a13=-2.4 # Vertical shift at load = 0 (N) A13
#-------- Longitudinal force
b0=1.65 # Shape factor B0
b1=-190.0 # Load infl. on long. friction coeff (*1000) (1/kN) B1
b2=3145 # Longitudinal friction coefficient at load = 0 (*1000) B2
b3=23.3 # Curvature factor of stiffness (N/%/kN**2) . B3
b4=700.0 # Change of stiffness with load at load = 0 (N/%/kN) B4
b5=0.0 # Change of progressivity of stiffness/load (1/kN) B5
b6=0.0068 # Curvature change with load B6
b7=0.055 # Curvature change with load B7
b8=-0.024 # Curvature at load = 0 B8
b9=0.014 # Load influence on horizontal shift (%/kN) B9
b10=0.26 # Horizontal shift at load = 0 (%) B10
b11=-86 # Load influence on vertical shift (N/kN) B11
b12=350 # Vertical shift at load = 0 (N) B12
#--------- Aligning moment
c0=2.10 # Shape factor C0
c1=-3.9 # Load influence of peak value (Nm/kN**2) C1
c2=-3.9 # Load influence of peak value (Nm/kN) C2
c3=-1.26 # Curvature factor of stiffness (Nm/deg/kN**2) C3
c4=-8.20 # Change of stiffness with load at load = 0 (Nm/deg/kN) C4
c5=0.025 # Change of progressivity of stiffness/load (1/kN) C5
c6=0.0 # Camber influence on stiffness (%/deg/100) C6
c7=0.044 # Curvature change with load C7
c8=-0.58 # Curvature change with load C8
c9=0.18 # Curvature at load = 0 C9
c10=0.043 # Camber influence of stiffness C10
c11=0.048 # Camber influence on horizontal shift (deg/deg) C11
c12=-0.0035 # Load influence on horizontal shift (deg/kN) C1
c13=-0.18 # Horizontal shift at load = 0 (deg) C13
c14=0.14 # Camber influence on vertical shift (Nm/deg/kN**2) C14
c15=-1.029 # Camber influence on vertical shift (Nm/deg/kN) C15
c16=0.27 # Load influence on vertical shift (Nm/kN) C16
c17=-1.1 # Vertical shift at load = 0 (Nm) C17c0=2.2
#---------
[ tire-rear ]
radius = 0.31
rolling-resistance = 1.3e-2, 6.5e-6
rotational-inertia = 10.0
tread = 0.0
#-------- Lateral force
a0=1.45 # Shape factor A0
a1=-96 # Load infl. on lat. friction coeff (*1000) (1/kN) A1
a2=3645 # Lateral friction coefficient at load = 0 (*1000) A2
a3=475 # Maximum stiffness (N/deg) A3
a4=21 # Load at maximum stiffness (kN) A4
a5=0.013 # Camber influence on stiffness (%/deg/100) A5
a6=-0.34 # Curvature change with load A6
a7=0.14 # Curvature at load = 0 A7
a8=0.019 # Horizontal shift because of camber (deg/deg) A8
a9=-0.019 # Load influence on horizontal shift (deg/kN) A9
a10=-0.18 # Horizontal shift at load = 0 (deg) A10
a111=-11 # Camber influence on vertical shift (N/deg/kN) A11.1
a112=-0.021 # Camber influence on vertical shift (N/deg/kN**2) A11.2
a12=0.98 # Load influence on vertical shift (N/kN) A12
a13=-2.4 # Vertical shift at load = 0 (N) A13
#-------- Longitudinal force
b0=1.65 # Shape factor B0
b1=-190.0 # Load infl. on long. friction coeff (*1000) (1/kN) B1
b2=3145 # Longitudinal friction coefficient at load = 0 (*1000) B2
b3=23.3 # Curvature factor of stiffness (N/%/kN**2) . B3
b4=700.0 # Change of stiffness with load at load = 0 (N/%/kN) B4
b5=0.0 # Change of progressivity of stiffness/load (1/kN) B5
b6=0.0068 # Curvature change with load B6
b7=0.055 # Curvature change with load B7
b8=-0.024 # Curvature at load = 0 B8
b9=0.014 # Load influence on horizontal shift (%/kN) B9
b10=0.26 # Horizontal shift at load = 0 (%) B10
b11=-86 # Load influence on vertical shift (N/kN) B11
b12=350 # Vertical shift at load = 0 (N) B12
#--------- Aligning moment
c0=2.10 # Shape factor C0
c1=-3.9 # Load influence of peak value (Nm/kN**2) C1
c2=-3.9 # Load influence of peak value (Nm/kN) C2
c3=-1.26 # Curvature factor of stiffness (Nm/deg/kN**2) C3
c4=-8.20 # Change of stiffness with load at load = 0 (Nm/deg/kN) C4
c5=0.025 # Change of progressivity of stiffness/load (1/kN) C5
c6=0.0 # Camber influence on stiffness (%/deg/100) C6
c7=0.044 # Curvature change with load C7
c8=-0.58 # Curvature change with load C8
c9=0.18 # Curvature at load = 0 C9
c10=0.043 # Camber influence of stiffness C10
c11=0.048 # Camber influence on horizontal shift (deg/deg) C11
c12=-0.0035 # Load influence on horizontal shift (deg/kN) C1
c13=-0.18 # Horizontal shift at load = 0 (deg) C13
c14=0.14 # Camber influence on vertical shift (Nm/deg/kN**2) C14
c15=-1.029 # Camber influence on vertical shift (Nm/deg/kN) C15
c16=0.27 # Load influence on vertical shift (Nm/kN) C16
c17=-1.1 # Vertical shift at load = 0 (Nm) C17c0=2.2
#---------
[ brakes-front ]
friction = 0.9
max-pressure = 3.0e6
bias = 0.35
radius = 0.1397
area = 0.01
[ brakes-rear ]
friction = 0.9
max-pressure = 3.0e6
bias = 0.65
radius = 0.1397
area = 0.01
handbrake = 1.8
[ driver ]
position = -0.38, 0.023, 0.1
mass = 80.0
view-position = -0.38, 0.023, 0.5
hood-mounted-view-position = 0.0, 1.0, 0.45
[ drag ]
position = 0.0, 0.0, -0.60
frontal-area = 2.0
drag-coefficient = 0.35
[ wing-front ]
position = 0, 2.34, -0.6
frontal-area = 0.2
drag-coefficient = 0
surface-area = 0.3
lift-coefficient = -0.5
efficiency = 0.95
[ wing-rear ]
position = 0, -2.14, 0.37
frontal-area = 0.2
drag-coefficient = 0
surface-area = 0.5
lift-coefficient = -0.5
efficiency = 0.95
[ wheel-FR ]
position = 0.76, 1.28, -0.42
roll-height = 0.2
mass = 30.0
restitution = 0.1
[ suspension-FR ]
position = 0.60, 1.28, -0.07
hinge = -0.71, 0.55, -0.0
[ wheel-FL ]
position = -0.76, 1.28, -0.42
roll-height = 0.2
mass = 30.0
restitution = 0.1
[ suspension-FL ]
position = -0.60, 1.28, -0.07
hinge = 0.71, 0.55, 0.0
[ wheel-RR ]
position = 0.76, -1.31, -0.42
roll-height = 0.2
mass = 30.0
restitution = 0.1
[ suspension-RR ]
position = 0.60, -1.31, -0.07
hinge = -0.25, -1.94, 0.0
[ wheel-RL ]
position = -0.76, -1.31, -0.42
roll-height = 0.2
mass = 30.0
restitution = 0.1
[ suspension-RL ]
position = -0.60, -1.31, -0.07
hinge = 0.25, -1.94, 0.0
[ contact-points ]
# used to find the bounds of the car (for collisions)
# also play into the weight distribution and balance
mass = 1.1
position-00 = 1.35, 0.0, -0.4
position-01 = 1.3, 1.58, -0.4
position-02 = 1.3, -1.58, -0.4
position-03 = 1.14, 0.86, -0.4
position-04 = 1.14, -0.86, -0.4
position-05 = 1.0, 0.96, -0.4
position-06 = 1.0, -0.96, -0.4
position-07 = 1.3, 1.54, 0.42
position-08 = 1.3, -1.51, 0.42
position-09 = -1.37, 1.51, -0.4
position-10 = -1.37, -1.55, -0.4
position-11 = -1.29, 0.43, -0.33
position-12 = -1.29, -0.43, -0.33
position-13 = -1.36, 0.30, -0.20
position-14 = -1.36, -0.30, -0.20
position-15 = -1.3, 1.44, 0.51
position-16 = -1.3, -1.44, 0.51
# these are used to calculate the weight distribution and balance
[ particle-00 ]
mass = 225
position = 1.11, -1.3, -0.12
[ particle-01 ]
mass = 225
position = -1.11, -1.3, -0.12
[ particle-02 ]
mass = 225
position = 1.11, 1.3, -0.12
[ particle-03 ]
mass = 225
position = -1.11, 1.3, -0.12
[ particle-04 ]
mass = 3
position = 1.11, -1.32, 0.22
[ particle-05 ]
mass = 3
position = 1.11, 1.32, 0.22
[ particle-06 ]
mass = 3
position = -1.11, -1.32, 0.22
[ particle-07 ]
mass = 3
position = -1.11, 1.32, 0.22
[ particle-08 ] # Chassis Front
mass = 13
position = 0.0, 1.5, -0.15
[ particle-09 ] # Cooler front
mass = 10
position = -0.0, 1.5, -0.25
[ particle-10 ] # Chassis left
mass = 16
position = 0.75, 0, -0.10
[ particle-11 ] # Chassis right
mass = 16
position = -0.75, 0, -0.10
[ particle-12 ] # Motor Env. left
mass = 6
position = 0.7, -1.10, -0.0
[ particle-13 ] # Motor Env. right
mass = 6
position = -0.7, -1.10, -0.0
[ particle-14 ] # Interieur
mass = 12
position = 0.00, 0.60, -0.10
[ particle-15 ] # Chassis top
mass = 8
position = 0.00, -0.30, 0.36
[ particle-16 ] # Joker
mass = 6
position = -0.00, 1.0, -0.20
[ particle-17 ] # gearbox
mass = 5
position = 0.00, -1.75, -0.25
[ particle-18 ] # Chassis rear
mass = 8
position = 0.00, -1.80, -0.0
|
|
02-04-2010, 02:51 PM,
|
|
CrystalH
Member
|
Posts: 113
Threads: 9
Joined: Feb 2010
|
|
The second settings I use (also for 3S) give more engine power and torque. This one feels more like tarmac, at the same time allowing to drift only by steering or applying brakes (set on 65% to rear). You can make a copy of a car with different setting by copying folder 3S to e.g. 3SF and in 3SF saving this file to 3SF.car.
Have fun and good drifting
Code: drive = AWD
version = 2
[ steering ]
max-angle = 22.1
[ engine ]
position = 0.0, 0.4, -0.1
mass = 80.0
max-power = 1159360
peak-engine-rpm = 6500
rpm-limit = 7000.0
inertia = 0.25
idle = 0.08
start-rpm = 1000
stall-rpm = 500
fuel-consumption = 0.0001
torque-friction = 0.0001
torque-curve-00 = 1000, 725.4
torque-curve-01 = 2000, 738.95
torque-curve-02 = 2500, 762.0
torque-curve-03 = 3000, 766.07
torque-curve-04 = 3300, 779.63
torque-curve-05 = 3500, 793.19
torque-curve-06 = 3800, 794.54
torque-curve-07 = 3900, 801.32
torque-curve-08 = 4000, 804.03
torque-curve-09 = 4100, 806.75
torque-curve-10 = 4200, 808.10
torque-curve-11 = 4400, 804.03
torque-curve-12 = 4600, 795.9
torque-curve-13 = 4900, 779.63
torque-curve-14 = 5500, 763.53
torque-curve-15 = 6000, 758.28
torque-curve-16 = 6300, 741.16
torque-curve-17 = 7000, 730.83
[ clutch ]
sliding = 0.27
radius = 0.15
area = 0.75
max-pressure = 93000
[ transmission ]
gears = 6
gear-ratio-r = -3.23
gear-ratio-1 = 3.32
gear-ratio-2 = 2.40
gear-ratio-3 = 1.77
gear-ratio-4 = 1.36
gear-ratio-5 = 1.00
gear-ratio-6 = 0.70
shift-delay = 0.02
[ differential ]
final-drive = 3.01
anti-slip = 400.0
[ fuel-tank ]
position = 0.2, -0.2, -0.26
capacity = 100.0
volume = 100.0
fuel-density = 0.08
[ suspension-front ]
spring-constant = 60000.0
bounce = 5000.0
rebound = 7500.0
travel = 0.12
max-compression-velocity = 10.0
camber = -1.33
caster = 0.32
toe = 0.0
anti-roll = 36000.0
[ suspension-rear ]
spring-constant = 55000.0
bounce = 4000.0
rebound = 6000.0
travel = 0.12
max-compression-velocity = 10.0
camber = -0.45
caster = 0.28
toe = 0.2
anti-roll = 12000.0
[ tire-front ]
radius = 0.31
rolling-resistance = 1.3e-2, 6.5e-6
rotational-inertia = 10.0
tread = 0.0
#-------- Lateral force
a0=1.7 # Shape factor A0
a1=-66 # Load infl. on lat. friction coeff (*1000) (1/kN) A1
a2=3645 # Lateral friction coefficient at load = 0 (*1000) A2
a3=775 # Maximum stiffness (N/deg) A3
a4=25 # Load at maximum stiffness (kN) A4
a5=0.013 # Camber influence on stiffness (%/deg/100) A5
a6=-0.14 # Curvature change with load A6
a7=0.14 # Curvature at load = 0 A7
a8=0.019 # Horizontal shift because of camber (deg/deg) A8
a9=-0.019 # Load influence on horizontal shift (deg/kN) A9
a10=-0.18 # Horizontal shift at load = 0 (deg) A10
a111=-11 # Camber influence on vertical shift (N/deg/kN) A11.1
a112=-0.021 # Camber influence on vertical shift (N/deg/kN**2) A11.2
a12=0.48 # Load influence on vertical shift (N/kN) A12
a13=-2.4 # Vertical shift at load = 0 (N) A13
#-------- Longitudinal force
b0=1.45 # Shape factor B0
b1=-90.0 # Load infl. on long. friction coeff (*1000) (1/kN) B1
b2=3145 # Longitudinal friction coefficient at load = 0 (*1000) B2
b3=23.3 # Curvature factor of stiffness (N/%/kN**2) . B3
b4=400.0 # Change of stiffness with load at load = 0 (N/%/kN) B4
b5=0.0 # Change of progressivity of stiffness/load (1/kN) B5
b6=0.0068 # Curvature change with load B6
b7=0.055 # Curvature change with load B7
b8=-0.024 # Curvature at load = 0 B8
b9=0.014 # Load influence on horizontal shift (%/kN) B9
b10=0.26 # Horizontal shift at load = 0 (%) B10
b11=-86 # Load influence on vertical shift (N/kN) B11
b12=350 # Vertical shift at load = 0 (N) B12
#--------- Aligning moment
c0=2.10 # Shape factor C0
c1=-3.9 # Load influence of peak value (Nm/kN**2) C1
c2=-3.9 # Load influence of peak value (Nm/kN) C2
c3=-1.26 # Curvature factor of stiffness (Nm/deg/kN**2) C3
c4=-8.20 # Change of stiffness with load at load = 0 (Nm/deg/kN) C4
c5=0.025 # Change of progressivity of stiffness/load (1/kN) C5
c6=0.0 # Camber influence on stiffness (%/deg/100) C6
c7=0.044 # Curvature change with load C7
c8=-0.58 # Curvature change with load C8
c9=0.18 # Curvature at load = 0 C9
c10=0.043 # Camber influence of stiffness C10
c11=0.048 # Camber influence on horizontal shift (deg/deg) C11
c12=-0.0035 # Load influence on horizontal shift (deg/kN) C1
c13=-0.18 # Horizontal shift at load = 0 (deg) C13
c14=0.14 # Camber influence on vertical shift (Nm/deg/kN**2) C14
c15=-1.029 # Camber influence on vertical shift (Nm/deg/kN) C15
c16=0.27 # Load influence on vertical shift (Nm/kN) C16
c17=-1.1 # Vertical shift at load = 0 (Nm) C17c0=2.2
#---------
[ tire-rear ]
radius = 0.31
rolling-resistance = 1.3e-2, 6.5e-6
rotational-inertia = 10.0
tread = 0.0
#-------- Lateral force
a0=1.7 # Shape factor A0
a1=-66 # Load infl. on lat. friction coeff (*1000) (1/kN) A1
a2=3645 # Lateral friction coefficient at load = 0 (*1000) A2
a3=775 # Maximum stiffness (N/deg) A3
a4=25 # Load at maximum stiffness (kN) A4
a5=0.013 # Camber influence on stiffness (%/deg/100) A5
a6=-0.14 # Curvature change with load A6
a7=0.14 # Curvature at load = 0 A7
a8=0.019 # Horizontal shift because of camber (deg/deg) A8
a9=-0.019 # Load influence on horizontal shift (deg/kN) A9
a10=-0.18 # Horizontal shift at load = 0 (deg) A10
a111=-11 # Camber influence on vertical shift (N/deg/kN) A11.1
a112=-0.021 # Camber influence on vertical shift (N/deg/kN**2) A11.2
a12=0.48 # Load influence on vertical shift (N/kN) A12
a13=-2.4 # Vertical shift at load = 0 (N) A13
#-------- Longitudinal force
b0=1.45 # Shape factor B0
b1=-90.0 # Load infl. on long. friction coeff (*1000) (1/kN) B1
b2=3145 # Longitudinal friction coefficient at load = 0 (*1000) B2
b3=23.3 # Curvature factor of stiffness (N/%/kN**2) . B3
b4=400.0 # Change of stiffness with load at load = 0 (N/%/kN) B4
b5=0.0 # Change of progressivity of stiffness/load (1/kN) B5
b6=0.0068 # Curvature change with load B6
b7=0.055 # Curvature change with load B7
b8=-0.024 # Curvature at load = 0 B8
b9=0.014 # Load influence on horizontal shift (%/kN) B9
b10=0.26 # Horizontal shift at load = 0 (%) B10
b11=-86 # Load influence on vertical shift (N/kN) B11
b12=350 # Vertical shift at load = 0 (N) B12
#--------- Aligning moment
c0=2.10 # Shape factor C0
c1=-3.9 # Load influence of peak value (Nm/kN**2) C1
c2=-3.9 # Load influence of peak value (Nm/kN) C2
c3=-1.26 # Curvature factor of stiffness (Nm/deg/kN**2) C3
c4=-8.20 # Change of stiffness with load at load = 0 (Nm/deg/kN) C4
c5=0.025 # Change of progressivity of stiffness/load (1/kN) C5
c6=0.0 # Camber influence on stiffness (%/deg/100) C6
c7=0.044 # Curvature change with load C7
c8=-0.58 # Curvature change with load C8
c9=0.18 # Curvature at load = 0 C9
c10=0.043 # Camber influence of stiffness C10
c11=0.048 # Camber influence on horizontal shift (deg/deg) C11
c12=-0.0035 # Load influence on horizontal shift (deg/kN) C1
c13=-0.18 # Horizontal shift at load = 0 (deg) C13
c14=0.14 # Camber influence on vertical shift (Nm/deg/kN**2) C14
c15=-1.029 # Camber influence on vertical shift (Nm/deg/kN) C15
c16=0.27 # Load influence on vertical shift (Nm/kN) C16
c17=-1.1 # Vertical shift at load = 0 (Nm) C17c0=2.2
#---------
[ brakes-front ]
friction = 0.9
max-pressure = 3.0e6
bias = 0.35
radius = 0.1397
area = 0.01
[ brakes-rear ]
friction = 0.9
max-pressure = 3.0e6
bias = 0.65
radius = 0.1397
area = 0.01
handbrake = 1.0
[ driver ]
position = -0.38, 0.023, 0.1
mass = 80.0
view-position = -0.38, 0.023, 0.5
hood-mounted-view-position = 0.0, 0.85, 0.5
[ drag ]
position = 0.0, 0.0, -0.60
frontal-area = 2.0
drag-coefficient = 0.35
[ wing-front ]
position = 0, 2.34, -0.6
frontal-area = 0.2
drag-coefficient = 0
surface-area = 0.3
lift-coefficient = -0.5
efficiency = 0.95
[ wing-rear ]
position = 0, -2.14, 0.37
frontal-area = 0.2
drag-coefficient = 0
surface-area = 0.5
lift-coefficient = -0.5
efficiency = 0.95
[ wheel-FR ]
position = 0.76, 1.28, -0.42
roll-height = 0.2
mass = 30.0
restitution = 0.1
[ suspension-FR ]
position = 0.60, 1.28, -0.07
hinge = -0.71, 0.55, -0.0
[ wheel-FL ]
position = -0.76, 1.28, -0.42
roll-height = 0.2
mass = 30.0
restitution = 0.1
[ suspension-FL ]
position = -0.60, 1.28, -0.07
hinge = 0.71, 0.55, 0.0
[ wheel-RR ]
position = 0.76, -1.31, -0.42
roll-height = 0.2
mass = 30.0
restitution = 0.1
[ suspension-RR ]
position = 0.60, -1.31, -0.07
hinge = -0.25, -1.94, 0.0
[ wheel-RL ]
position = -0.76, -1.31, -0.42
roll-height = 0.2
mass = 30.0
restitution = 0.1
[ suspension-RL ]
position = -0.60, -1.31, -0.07
hinge = 0.25, -1.94, 0.0
# these are used to calculate the weight distribution and balance
[ particle-00 ]
mass = 250
position = 1.3, -1.5, -0.12
[ particle-01 ]
mass = 250
position = -1.3, -1.5, -0.12
[ particle-02 ]
mass = 240
position = 1.3, 1.5, -0.12
[ particle-03 ]
mass = 240
position = -1.3, 1.5, -0.12
[ particle-04 ]
mass = 23
position = 1.11, -2.32, -0.062
[ particle-05 ]
mass = 23
position = 1.11, 2.32, -0.062
[ particle-06 ]
mass = 23
position = -1.11, -2.32, -0.062
[ particle-07 ]
mass = 23
position = -1.11, 2.32, -0.062
|
|
02-04-2010, 05:04 PM,
|
|
CrystalH
Member
|
Posts: 113
Threads: 9
Joined: Feb 2010
|
|
Right, good question, i forgot to wirte this. I turned off ABS and TCS, and also set to zero the speed affect on steering. (its kind of more natural this way, for me)
|
|
02-09-2010, 02:48 PM,
|
|
CrystalH
Member
|
Posts: 113
Threads: 9
Joined: Feb 2010
|
|
I've made an ice mod (also for 3S.car). This is actually for curious people, because it feels like driving on ice, no grip and always sliding. Its very funny, yet playable. It requires lot of patience. Every track becomes a different challenge.
Code: drive = AWD
version = 2
[ steering ]
max-angle = 22.1
[ engine ]
position = 0.0, 0.4, -0.1
mass = 70.0
max-power = 659360
peak-engine-rpm = 6500
rpm-limit = 7000.0
inertia = 0.25
idle = 0.08
start-rpm = 1000
stall-rpm = 400
fuel-consumption = 1e-9
torque-friction = 0.0001
torque-curve-00 = 1000, 525.4
torque-curve-01 = 2000, 538.95
torque-curve-02 = 2500, 562.0
torque-curve-03 = 3000, 566.07
torque-curve-04 = 3300, 579.63
torque-curve-05 = 3500, 593.19
torque-curve-06 = 3800, 694.54
torque-curve-07 = 3900, 601.32
torque-curve-08 = 4000, 604.03
torque-curve-09 = 4100, 606.75
torque-curve-10 = 4200, 608.10
torque-curve-11 = 4400, 604.03
torque-curve-12 = 4600, 595.9
torque-curve-13 = 4900, 579.63
torque-curve-14 = 5500, 533.53
torque-curve-15 = 6000, 498.28
torque-curve-16 = 6300, 471.16
torque-curve-17 = 7000, 450.83
[ clutch ]
sliding = 0.27
radius = 0.15
area = 0.75
max-pressure = 93000
[ transmission ]
gears = 6
gear-ratio-r = -3.23
gear-ratio-1 = 3.32
gear-ratio-2 = 2.40
gear-ratio-3 = 1.77
gear-ratio-4 = 1.36
gear-ratio-5 = 1.02
gear-ratio-6 = 0.78
shift-delay = 0.02
[ differential ]
final-drive = 3.21
anti-slip = 400.0
[ fuel-tank ]
position = -0.1, -0.2, -0.26
capacity = 100.0
volume = 100.0
fuel-density = 0.08
[ suspension-front ]
spring-constant = 60000.0
bounce = 5000.0
rebound = 7500.0
travel = 0.12
max-compression-velocity = 10.0
camber = -1.33
caster = 0.32
toe = 0.0
anti-roll = 36000.0
[ suspension-rear ]
spring-constant = 55000.0
bounce = 4000.0
rebound = 6000.0
travel = 0.12
max-compression-velocity = 10.0
camber = -0.45
caster = 0.28
toe = 0.2
anti-roll = 12000.0
[ tire-front ]
radius = 0.31
rolling-resistance = 1.3e-2, 6.5e-6
rotational-inertia = 10.0
tread = 0.0
#-------- Lateral force
a0=1.0 # Shape factor A0
a1=-46 # Load infl. on lat. friction coeff (*1000) (1/kN) A1
a2=2645 # Lateral friction coefficient at load = 0 (*1000) A2
a3=225 # Maximum stiffness (N/deg) A3
a4=33 # Load at maximum stiffness (kN) A4
a5=0.013 # Camber influence on stiffness (%/deg/100) A5
a6=-0.14 # Curvature change with load A6
a7=0.14 # Curvature at load = 0 A7
a8=0.019 # Horizontal shift because of camber (deg/deg) A8
a9=-0.019 # Load influence on horizontal shift (deg/kN) A9
a10=-0.18 # Horizontal shift at load = 0 (deg) A10
a111=-11 # Camber influence on vertical shift (N/deg/kN) A11.1
a112=-0.021 # Camber influence on vertical shift (N/deg/kN**2) A11.2
a12=0.48 # Load influence on vertical shift (N/kN) A12
a13=-2.4 # Vertical shift at load = 0 (N) A13
#-------- Longitudinal force
b0=1.15 # Shape factor B0
b1=-90.0 # Load infl. on long. friction coeff (*1000) (1/kN) B1
b2=2145 # Longitudinal friction coefficient at load = 0 (*1000) B2
b3=7.3 # Curvature factor of stiffness (N/%/kN**2) . B3
b4=100.0 # Change of stiffness with load at load = 0 (N/%/kN) B4
b5=0.0 # Change of progressivity of stiffness/load (1/kN) B5
b6=0.0068 # Curvature change with load B6
b7=0.055 # Curvature change with load B7
b8=-0.024 # Curvature at load = 0 B8
b9=0.014 # Load influence on horizontal shift (%/kN) B9
b10=0.26 # Horizontal shift at load = 0 (%) B10
b11=-86 # Load influence on vertical shift (N/kN) B11
b12=350 # Vertical shift at load = 0 (N) B12
#--------- Aligning moment
c0=2.10 # Shape factor C0
c1=-3.9 # Load influence of peak value (Nm/kN**2) C1
c2=-3.9 # Load influence of peak value (Nm/kN) C2
c3=-1.26 # Curvature factor of stiffness (Nm/deg/kN**2) C3
c4=-8.20 # Change of stiffness with load at load = 0 (Nm/deg/kN) C4
c5=0.025 # Change of progressivity of stiffness/load (1/kN) C5
c6=0.0 # Camber influence on stiffness (%/deg/100) C6
c7=0.044 # Curvature change with load C7
c8=-0.58 # Curvature change with load C8
c9=0.18 # Curvature at load = 0 C9
c10=0.043 # Camber influence of stiffness C10
c11=0.048 # Camber influence on horizontal shift (deg/deg) C11
c12=-0.0035 # Load influence on horizontal shift (deg/kN) C1
c13=-0.18 # Horizontal shift at load = 0 (deg) C13
c14=0.14 # Camber influence on vertical shift (Nm/deg/kN**2) C14
c15=-1.029 # Camber influence on vertical shift (Nm/deg/kN) C15
c16=0.27 # Load influence on vertical shift (Nm/kN) C16
c17=-1.1 # Vertical shift at load = 0 (Nm) C17c0=2.2
#---------
[ tire-rear ]
radius = 0.31
rolling-resistance = 1.3e-2, 6.5e-6
rotational-inertia = 10.0
tread = 0.0
#-------- Lateral force
a0=1.0 # Shape factor A0
a1=-46 # Load infl. on lat. friction coeff (*1000) (1/kN) A1
a2=2645 # Lateral friction coefficient at load = 0 (*1000) A2
a3=225 # Maximum stiffness (N/deg) A3
a4=33 # Load at maximum stiffness (kN) A4
a5=0.013 # Camber influence on stiffness (%/deg/100) A5
a6=-0.14 # Curvature change with load A6
a7=0.14 # Curvature at load = 0 A7
a8=0.019 # Horizontal shift because of camber (deg/deg) A8
a9=-0.019 # Load influence on horizontal shift (deg/kN) A9
a10=-0.18 # Horizontal shift at load = 0 (deg) A10
a111=-11 # Camber influence on vertical shift (N/deg/kN) A11.1
a112=-0.021 # Camber influence on vertical shift (N/deg/kN**2) A11.2
a12=0.48 # Load influence on vertical shift (N/kN) A12
a13=-2.4 # Vertical shift at load = 0 (N) A13
#-------- Longitudinal force
b0=1.15 # Shape factor B0
b1=-90.0 # Load infl. on long. friction coeff (*1000) (1/kN) B1
b2=2145 # Longitudinal friction coefficient at load = 0 (*1000) B2
b3=7.3 # Curvature factor of stiffness (N/%/kN**2) . B3
b4=100.0 # Change of stiffness with load at load = 0 (N/%/kN) B4
b5=0.0 # Change of progressivity of stiffness/load (1/kN) B5
b6=0.0068 # Curvature change with load B6
b7=0.055 # Curvature change with load B7
b8=-0.024 # Curvature at load = 0 B8
b9=0.014 # Load influence on horizontal shift (%/kN) B9
b10=0.26 # Horizontal shift at load = 0 (%) B10
b11=-86 # Load influence on vertical shift (N/kN) B11
b12=350 # Vertical shift at load = 0 (N) B12
#--------- Aligning moment
c0=2.10 # Shape factor C0
c1=-3.9 # Load influence of peak value (Nm/kN**2) C1
c2=-3.9 # Load influence of peak value (Nm/kN) C2
c3=-1.26 # Curvature factor of stiffness (Nm/deg/kN**2) C3
c4=-8.20 # Change of stiffness with load at load = 0 (Nm/deg/kN) C4
c5=0.025 # Change of progressivity of stiffness/load (1/kN) C5
c6=0.0 # Camber influence on stiffness (%/deg/100) C6
c7=0.044 # Curvature change with load C7
c8=-0.58 # Curvature change with load C8
c9=0.18 # Curvature at load = 0 C9
c10=0.043 # Camber influence of stiffness C10
c11=0.048 # Camber influence on horizontal shift (deg/deg) C11
c12=-0.0035 # Load influence on horizontal shift (deg/kN) C1
c13=-0.18 # Horizontal shift at load = 0 (deg) C13
c14=0.14 # Camber influence on vertical shift (Nm/deg/kN**2) C14
c15=-1.029 # Camber influence on vertical shift (Nm/deg/kN) C15
c16=0.27 # Load influence on vertical shift (Nm/kN) C16
c17=-1.1 # Vertical shift at load = 0 (Nm) C17c0=2.2
#---------
[ brakes-front ]
friction = 0.9
max-pressure = 4.5e6
bias = 0.45
radius = 0.1397
area = 0.01
[ brakes-rear ]
friction = 0.9
max-pressure = 4.5e6
bias = 0.55
radius = 0.1397
area = 0.01
handbrake = 1.8
[ driver ]
position = -0.38, 0.023, 0.1
mass = 80.0
view-position = -0.38, 0.023, 0.5
hood-mounted-view-position = 0.0, 1.0, 0.45
[ drag ]
position = 0.0, 0.0, -0.60
frontal-area = 2.0
drag-coefficient = 0.35
[ wing-front ]
position = 0, 2.34, -0.6
frontal-area = 0.2
drag-coefficient = 0
surface-area = 0.3
lift-coefficient = -0.5
efficiency = 0.95
[ wing-rear ]
position = 0, -2.14, 0.37
frontal-area = 0.2
drag-coefficient = 0
surface-area = 0.5
lift-coefficient = -0.5
efficiency = 0.95
[ wheel-FR ]
position = 0.76, 1.28, -0.42
roll-height = 0.2
mass = 30.0
restitution = 0.1
[ suspension-FR ]
position = 0.60, 1.28, -0.07
hinge = -0.71, 0.55, -0.0
[ wheel-FL ]
position = -0.76, 1.28, -0.42
roll-height = 0.2
mass = 30.0
restitution = 0.1
[ suspension-FL ]
position = -0.60, 1.28, -0.07
hinge = 0.71, 0.55, 0.0
[ wheel-RR ]
position = 0.76, -1.31, -0.42
roll-height = 0.2
mass = 30.0
restitution = 0.1
[ suspension-RR ]
position = 0.60, -1.31, -0.07
hinge = -0.25, -1.94, 0.0
[ wheel-RL ]
position = -0.76, -1.31, -0.42
roll-height = 0.2
mass = 30.0
restitution = 0.1
[ suspension-RL ]
position = -0.60, -1.31, -0.07
hinge = 0.25, -1.94, 0.0
[ contact-points ]
# used to find the bounds of the car (for collisions)
# also play into the weight distribution and balance
mass = 0.1
position-00 = 1.35, 0.0, -0.4
position-01 = 1.3, 1.58, -0.4
position-02 = 1.3, -1.58, -0.4
position-03 = 1.14, 0.86, -0.4
position-04 = 1.14, -0.86, -0.4
position-05 = 1.0, 0.96, -0.4
position-06 = 1.0, -0.96, -0.4
position-07 = 1.3, 1.54, 0.42
position-08 = 1.3, -1.51, 0.42
position-09 = -1.37, 1.51, -0.4
position-10 = -1.37, -1.55, -0.4
position-11 = -1.29, 0.43, -0.33
position-12 = -1.29, -0.43, -0.33
position-13 = -1.36, 0.30, -0.20
position-14 = -1.36, -0.30, -0.20
position-15 = -1.3, 1.44, 0.51
position-16 = -1.3, -1.44, 0.51
# these are used to calculate the weight distribution and balance
[ particle-00 ]
mass = 225
position = 1.11, -1.3, -0.12
[ particle-01 ]
mass = 225
position = -1.11, -1.3, -0.12
[ particle-02 ]
mass = 225
position = 1.11, 1.3, -0.12
[ particle-03 ]
mass = 225
position = -1.11, 1.3, -0.12
[ particle-04 ]
mass = 3
position = 1.11, -1.32, 0.22
[ particle-05 ]
mass = 3
position = 1.11, 1.32, 0.22
[ particle-06 ]
mass = 3
position = -1.11, -1.32, 0.22
[ particle-07 ]
mass = 3
position = -1.11, 1.32, 0.22
[ particle-08 ] # Chassis Front
mass = 13
position = 0.0, 1.5, -0.15
[ particle-09 ] # Cooler front
mass = 10
position = -0.0, 1.5, -0.25
[ particle-10 ] # Chassis left
mass = 16
position = 0.75, 0, -0.10
[ particle-11 ] # Chassis right
mass = 16
position = -0.75, 0, -0.10
[ particle-12 ] # Motor Env. left
mass = 6
position = 0.7, -1.10, -0.0
[ particle-13 ] # Motor Env. right
mass = 6
position = -0.7, -1.10, -0.0
[ particle-14 ] # Interieur
mass = 12
position = 0.00, 0.60, -0.10
[ particle-15 ] # Chassis top
mass = 8
position = 0.00, -0.30, 0.36
[ particle-16 ] # Joker
mass = 6
position = -0.00, 1.0, -0.20
[ particle-17 ] # gearbox
mass = 5
position = 0.00, -1.75, -0.25
[ particle-18 ] # Chassis rear
mass = 8
position = 0.00, -1.80, -0.0
|
|
07-25-2017, 02:54 AM,
|
|
dongvanhung
Junior Member
|
Posts: 11
Threads: 1
Joined: Jul 2017
|
|
RE: Easy drifting cars (.car files)
Wow, thanks you guy ! Waiting for this long time ago.
|
|
|