The second settings I use (also for 3S) give more engine power and torque. This one feels more like tarmac, at the same time allowing to drift only by steering or applying brakes (set on 65% to rear). You can make a copy of a car with different setting by copying folder 3S to e.g. 3SF and in 3SF saving this file to 3SF.car.
Code:
drive = AWD
version = 2
[ steering ]
max-angle = 22.1
[ engine ]
position = 0.0, 0.4, -0.1
mass = 80.0
max-power = 1159360
peak-engine-rpm = 6500
rpm-limit = 7000.0
inertia = 0.25
idle = 0.08
start-rpm = 1000
stall-rpm = 500
fuel-consumption = 0.0001
torque-friction = 0.0001
torque-curve-00 = 1000, 725.4
torque-curve-01 = 2000, 738.95
torque-curve-02 = 2500, 762.0
torque-curve-03 = 3000, 766.07
torque-curve-04 = 3300, 779.63
torque-curve-05 = 3500, 793.19
torque-curve-06 = 3800, 794.54
torque-curve-07 = 3900, 801.32
torque-curve-08 = 4000, 804.03
torque-curve-09 = 4100, 806.75
torque-curve-10 = 4200, 808.10
torque-curve-11 = 4400, 804.03
torque-curve-12 = 4600, 795.9
torque-curve-13 = 4900, 779.63
torque-curve-14 = 5500, 763.53
torque-curve-15 = 6000, 758.28
torque-curve-16 = 6300, 741.16
torque-curve-17 = 7000, 730.83
[ clutch ]
sliding = 0.27
radius = 0.15
area = 0.75
max-pressure = 93000
[ transmission ]
gears = 6
gear-ratio-r = -3.23
gear-ratio-1 = 3.32
gear-ratio-2 = 2.40
gear-ratio-3 = 1.77
gear-ratio-4 = 1.36
gear-ratio-5 = 1.00
gear-ratio-6 = 0.70
shift-delay = 0.02
[ differential ]
final-drive = 3.01
anti-slip = 400.0
[ fuel-tank ]
position = 0.2, -0.2, -0.26
capacity = 100.0
volume = 100.0
fuel-density = 0.08
[ suspension-front ]
spring-constant = 60000.0
bounce = 5000.0
rebound = 7500.0
travel = 0.12
max-compression-velocity = 10.0
camber = -1.33
caster = 0.32
toe = 0.0
anti-roll = 36000.0
[ suspension-rear ]
spring-constant = 55000.0
bounce = 4000.0
rebound = 6000.0
travel = 0.12
max-compression-velocity = 10.0
camber = -0.45
caster = 0.28
toe = 0.2
anti-roll = 12000.0
[ tire-front ]
radius = 0.31
rolling-resistance = 1.3e-2, 6.5e-6
rotational-inertia = 10.0
tread = 0.0
#-------- Lateral force
a0=1.7 # Shape factor A0
a1=-66 # Load infl. on lat. friction coeff (*1000) (1/kN) A1
a2=3645 # Lateral friction coefficient at load = 0 (*1000) A2
a3=775 # Maximum stiffness (N/deg) A3
a4=25 # Load at maximum stiffness (kN) A4
a5=0.013 # Camber influence on stiffness (%/deg/100) A5
a6=-0.14 # Curvature change with load A6
a7=0.14 # Curvature at load = 0 A7
a8=0.019 # Horizontal shift because of camber (deg/deg) A8
a9=-0.019 # Load influence on horizontal shift (deg/kN) A9
a10=-0.18 # Horizontal shift at load = 0 (deg) A10
a111=-11 # Camber influence on vertical shift (N/deg/kN) A11.1
a112=-0.021 # Camber influence on vertical shift (N/deg/kN**2) A11.2
a12=0.48 # Load influence on vertical shift (N/kN) A12
a13=-2.4 # Vertical shift at load = 0 (N) A13
#-------- Longitudinal force
b0=1.45 # Shape factor B0
b1=-90.0 # Load infl. on long. friction coeff (*1000) (1/kN) B1
b2=3145 # Longitudinal friction coefficient at load = 0 (*1000) B2
b3=23.3 # Curvature factor of stiffness (N/%/kN**2) . B3
b4=400.0 # Change of stiffness with load at load = 0 (N/%/kN) B4
b5=0.0 # Change of progressivity of stiffness/load (1/kN) B5
b6=0.0068 # Curvature change with load B6
b7=0.055 # Curvature change with load B7
b8=-0.024 # Curvature at load = 0 B8
b9=0.014 # Load influence on horizontal shift (%/kN) B9
b10=0.26 # Horizontal shift at load = 0 (%) B10
b11=-86 # Load influence on vertical shift (N/kN) B11
b12=350 # Vertical shift at load = 0 (N) B12
#--------- Aligning moment
c0=2.10 # Shape factor C0
c1=-3.9 # Load influence of peak value (Nm/kN**2) C1
c2=-3.9 # Load influence of peak value (Nm/kN) C2
c3=-1.26 # Curvature factor of stiffness (Nm/deg/kN**2) C3
c4=-8.20 # Change of stiffness with load at load = 0 (Nm/deg/kN) C4
c5=0.025 # Change of progressivity of stiffness/load (1/kN) C5
c6=0.0 # Camber influence on stiffness (%/deg/100) C6
c7=0.044 # Curvature change with load C7
c8=-0.58 # Curvature change with load C8
c9=0.18 # Curvature at load = 0 C9
c10=0.043 # Camber influence of stiffness C10
c11=0.048 # Camber influence on horizontal shift (deg/deg) C11
c12=-0.0035 # Load influence on horizontal shift (deg/kN) C1
c13=-0.18 # Horizontal shift at load = 0 (deg) C13
c14=0.14 # Camber influence on vertical shift (Nm/deg/kN**2) C14
c15=-1.029 # Camber influence on vertical shift (Nm/deg/kN) C15
c16=0.27 # Load influence on vertical shift (Nm/kN) C16
c17=-1.1 # Vertical shift at load = 0 (Nm) C17c0=2.2
#---------
[ tire-rear ]
radius = 0.31
rolling-resistance = 1.3e-2, 6.5e-6
rotational-inertia = 10.0
tread = 0.0
#-------- Lateral force
a0=1.7 # Shape factor A0
a1=-66 # Load infl. on lat. friction coeff (*1000) (1/kN) A1
a2=3645 # Lateral friction coefficient at load = 0 (*1000) A2
a3=775 # Maximum stiffness (N/deg) A3
a4=25 # Load at maximum stiffness (kN) A4
a5=0.013 # Camber influence on stiffness (%/deg/100) A5
a6=-0.14 # Curvature change with load A6
a7=0.14 # Curvature at load = 0 A7
a8=0.019 # Horizontal shift because of camber (deg/deg) A8
a9=-0.019 # Load influence on horizontal shift (deg/kN) A9
a10=-0.18 # Horizontal shift at load = 0 (deg) A10
a111=-11 # Camber influence on vertical shift (N/deg/kN) A11.1
a112=-0.021 # Camber influence on vertical shift (N/deg/kN**2) A11.2
a12=0.48 # Load influence on vertical shift (N/kN) A12
a13=-2.4 # Vertical shift at load = 0 (N) A13
#-------- Longitudinal force
b0=1.45 # Shape factor B0
b1=-90.0 # Load infl. on long. friction coeff (*1000) (1/kN) B1
b2=3145 # Longitudinal friction coefficient at load = 0 (*1000) B2
b3=23.3 # Curvature factor of stiffness (N/%/kN**2) . B3
b4=400.0 # Change of stiffness with load at load = 0 (N/%/kN) B4
b5=0.0 # Change of progressivity of stiffness/load (1/kN) B5
b6=0.0068 # Curvature change with load B6
b7=0.055 # Curvature change with load B7
b8=-0.024 # Curvature at load = 0 B8
b9=0.014 # Load influence on horizontal shift (%/kN) B9
b10=0.26 # Horizontal shift at load = 0 (%) B10
b11=-86 # Load influence on vertical shift (N/kN) B11
b12=350 # Vertical shift at load = 0 (N) B12
#--------- Aligning moment
c0=2.10 # Shape factor C0
c1=-3.9 # Load influence of peak value (Nm/kN**2) C1
c2=-3.9 # Load influence of peak value (Nm/kN) C2
c3=-1.26 # Curvature factor of stiffness (Nm/deg/kN**2) C3
c4=-8.20 # Change of stiffness with load at load = 0 (Nm/deg/kN) C4
c5=0.025 # Change of progressivity of stiffness/load (1/kN) C5
c6=0.0 # Camber influence on stiffness (%/deg/100) C6
c7=0.044 # Curvature change with load C7
c8=-0.58 # Curvature change with load C8
c9=0.18 # Curvature at load = 0 C9
c10=0.043 # Camber influence of stiffness C10
c11=0.048 # Camber influence on horizontal shift (deg/deg) C11
c12=-0.0035 # Load influence on horizontal shift (deg/kN) C1
c13=-0.18 # Horizontal shift at load = 0 (deg) C13
c14=0.14 # Camber influence on vertical shift (Nm/deg/kN**2) C14
c15=-1.029 # Camber influence on vertical shift (Nm/deg/kN) C15
c16=0.27 # Load influence on vertical shift (Nm/kN) C16
c17=-1.1 # Vertical shift at load = 0 (Nm) C17c0=2.2
#---------
[ brakes-front ]
friction = 0.9
max-pressure = 3.0e6
bias = 0.35
radius = 0.1397
area = 0.01
[ brakes-rear ]
friction = 0.9
max-pressure = 3.0e6
bias = 0.65
radius = 0.1397
area = 0.01
handbrake = 1.0
[ driver ]
position = -0.38, 0.023, 0.1
mass = 80.0
view-position = -0.38, 0.023, 0.5
hood-mounted-view-position = 0.0, 0.85, 0.5
[ drag ]
position = 0.0, 0.0, -0.60
frontal-area = 2.0
drag-coefficient = 0.35
[ wing-front ]
position = 0, 2.34, -0.6
frontal-area = 0.2
drag-coefficient = 0
surface-area = 0.3
lift-coefficient = -0.5
efficiency = 0.95
[ wing-rear ]
position = 0, -2.14, 0.37
frontal-area = 0.2
drag-coefficient = 0
surface-area = 0.5
lift-coefficient = -0.5
efficiency = 0.95
[ wheel-FR ]
position = 0.76, 1.28, -0.42
roll-height = 0.2
mass = 30.0
restitution = 0.1
[ suspension-FR ]
position = 0.60, 1.28, -0.07
hinge = -0.71, 0.55, -0.0
[ wheel-FL ]
position = -0.76, 1.28, -0.42
roll-height = 0.2
mass = 30.0
restitution = 0.1
[ suspension-FL ]
position = -0.60, 1.28, -0.07
hinge = 0.71, 0.55, 0.0
[ wheel-RR ]
position = 0.76, -1.31, -0.42
roll-height = 0.2
mass = 30.0
restitution = 0.1
[ suspension-RR ]
position = 0.60, -1.31, -0.07
hinge = -0.25, -1.94, 0.0
[ wheel-RL ]
position = -0.76, -1.31, -0.42
roll-height = 0.2
mass = 30.0
restitution = 0.1
[ suspension-RL ]
position = -0.60, -1.31, -0.07
hinge = 0.25, -1.94, 0.0
# these are used to calculate the weight distribution and balance
[ particle-00 ]
mass = 250
position = 1.3, -1.5, -0.12
[ particle-01 ]
mass = 250
position = -1.3, -1.5, -0.12
[ particle-02 ]
mass = 240
position = 1.3, 1.5, -0.12
[ particle-03 ]
mass = 240
position = -1.3, 1.5, -0.12
[ particle-04 ]
mass = 23
position = 1.11, -2.32, -0.062
[ particle-05 ]
mass = 23
position = 1.11, 2.32, -0.062
[ particle-06 ]
mass = 23
position = -1.11, -2.32, -0.062
[ particle-07 ]
mass = 23
position = -1.11, 2.32, -0.062